
Understanding class 
definitions

Looking inside classes

5.0



2

Main concepts to be covered

• fields
• constructors
• methods
• parameters
• assignment statements

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



3

Ticket machines – an external 
view

• Exploring the behavior of a typical 
ticket machine.
– Use the naive-ticket-machine project.
– Machines supply tickets of a fixed price.

• How is that price determined?

– How is ‘money’ entered into a machine?
– How does a machine keep track of the 

money that is entered?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



4

Ticket machines

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Demo



5

Ticket machines – an internal 
view

• Interacting with an object gives us 
clues about its behavior.

• Looking inside allows us to determine 
how that behavior is provided or 
implemented.

• All Java classes have a similar-looking 
internal view.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



6

Basic class structure

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class TicketMachine
{

Inner part omitted.
}

public class ClassName
{

Fields
Constructors
Methods

}

The outer wrapper 
of TicketMachine

The inner 
contents of a 

class



7

Keywords

• Words with a special meaning in the 
language:
– public

– class

– private

– int

• Also known as reserved words.



8

Fields
• Fields store values 

for an object.
• They are also known 

as instance variables.
• Fields define the 

state of an object.
• Use Inspect to view 

the state.
• Some values change 

often.
• Some change rarely 

(or not at all).

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class TicketMachine
{

private int price;
private int balance;
private int total;

Further details omitted.
} 

private int price;

visibility modifier
type

variable name



9

Constructors

• Initialize an object.
• Have the same name as their class.
• Close association with the fields.
• Store initial values into the fields.
• External parameter values for this.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public TicketMachine(int cost)
{

price = cost;
balance = 0;
total = 0;

}



10

Passing data via parameters

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Parameters are another 
sort of variable.



11

Assignment

• Values are stored into fields (and 
other variables) via assignment 
statements:
– variable = expression;
– price = cost;

• A variable stores a single value, so 
any previous value is lost.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



12

Choosing variable names

• There is a lot of freedom over choice 
of names. Use it wisely!

• Choose expressive names to make 
code easier to understand:
– price, amount, name, age, etc.

• Avoid single-letter or cryptic names:
– w, t5, xyz123



13

Main concepts to be covered

• methods
– including accessor and mutator 

methods

• conditional statements
• string concatenation
• local variables

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



14

Methods

• Methods implement the behavior of objects.
• Methods have a consistent structure 

comprised of a header and a body.
• Accessor methods provide information about 

an object.
• Mutator methods alter the state of an object.
• Other sorts of methods accomplish a variety 

of tasks.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



15

Method structure

• The header provides the method’s 
signature:
– public int getPrice()

• The header tells us:
– the name of the method
– what parameters it takes
– whether it returns a result
– its visibility to objects of other classes

• The body encloses the method’s 
statements.



16

Accessor (get) methods

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public int getPrice()
{

return price;
}

return type
method name

parameter list 
(empty)

start and end of method body (block)

return statement

visibility modifier



17

Accessor methods

• An accessor method always has a 
return type that is not void.

• An accessor method returns a value 
(result) of the type given in the 
header.

• The method will contain a return
statement to return the value.

• NB: Returning is not printing!



18

Test

• What is 
wrong 
here?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class CokeMachine
{
private price;

public CokeMachine()
{

price = 300
}

public int getPrice
{

return Price;
}

(there are five
errors!)



19

Test

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class CokeMachine
{
private price;

public CokeMachine()
{

price = 300
}

public int getPrice
{

return Price;
}
}

;

()

int

-

• What is 
wrong 
here?

(there are five
errors!)



20

Mutator methods

• Have a similar method structure: 
header and body.

• Used to mutate (i.e., change) an 
object’s state.

• Achieved through changing the value 
of one or more fields.
– Typically contain assignment 

statements.
– Often receive parameters.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



21

Mutator methods

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public void insertMoney(int amount)
{

balance = balance + amount;
}

return type
method name parameter

visibility modifier

assignment statementfield being mutated



22

set mutator methods

• Fields often have dedicated set
mutator methods.

• These have a simple, distinctive 
form:
– void return type
– method name related to the field name
– single parameter, with the same type as 

the type of the field
– a single assignment statement



23

A typical set method

public void setDiscount(int amount)
{

discount = amount;
}

We can infer that discount
is a field of type int, i.e:

private int discount;



24

Protective mutators

• A set method does not have to assign 
the parameter to the field.

• The parameter may be checked for 
validity and rejected if 
inappropriate.

• Mutators thereby protect fields.
• Mutators support encapsulation.



25

Printing from methods

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public void printTicket()
{

// Simulate the printing of a ticket.
System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

// Update the total collected with the balance.
total = total + balance;
// Clear the balance.
balance = 0;

} 



26

String concatenation

• 4 + 5
9

• "wind" + "ow"
"window"

• "Result: " + 6
"Result: 6"

• "# " + price + " cents"
"# 500 cents"

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

overloading



27

Quiz

• System.out.println(5 + 6 + "hello");

• System.out.println("hello" + 5 + 6);

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

11hello

hello56



28

Method summary

• Methods implement all object behavior.
• A method has a name and a return type.

– The return-type may be void.
– A non-void return type means the method will 

return a value to its caller.

• A method might take parameters.
– Parameters bring values in from outside for the 

method to use.



29

Reflecting on the ticket 
machines

• Their behavior is inadequate in 
several ways:
– No checks on the amounts entered.
– No refunds.
– No checks for a sensible initialization.

• How can we do better?
– We need more sophisticated behavior.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



30

Making choices in everyday life

• If I have enough money left, then I 
will go out for a meal

• otherwise I will stay home and watch 
a movie.



31

Making a choice in everyday life

if(I have enough money left) {
go out for a meal;

}
else {

stay home and watch a movie;
}



32

Making choices in Java

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

if(perform some test) {
Do these statements if the test gave a true result

}
else {

Do these statements if the test gave a false result
}

‘if’ keyword
boolean condition to be tested

actions if condition is true

actions if condition is false
‘else’ keyword



33

Making a choice in the
ticket machine

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public void insertMoney(int amount)
{

if(amount > 0) {
balance = balance + amount;

}
else {

System.out.println(
"Use a positive amount: " +
amount);

}
}



34

How do we write 
'refundBalance'?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



35

Variables – a recap

• Fields are one sort of variable.
– They store values through the life of an object.
– They are accessible throughout the class.

• Parameters are another sort of variable:
– They receive values from outside the method.
– They help a method complete its task.
– Each call to the method receives a fresh set of 

values.
– Parameter values are short lived.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



36

Local variables

• Methods can define their own, local
variables:
– Short lived, like parameters.
– The method sets their values – unlike 

parameters, they do not receive external 
values.

– Used for ‘temporary’ calculation and storage.
– They exist only as long as the method is being 

executed.
– They are only accessible from within the 

method.



37

Scope highlighting



38

Scope and lifetime

• Each block defines a new scope.
– Class, method and statement.

• Scopes may be nested:
– statement block inside another block 

inside a method body inside a class 
body.

• Scope is static (textual).
• Lifetime is dynamic (runtime).

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



39

Local variables

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public int refundBalance()
{

int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;

}

A local variable

No visibility
modifier



40

Scope and lifetime

• The scope of a local variable is the 
block in which it is declared.

• The lifetime of a local variable is the 
time of execution of the block in 
which it is declared.

• The scope of a field is its whole class.
• The lifetime of a field is the lifetime 

of its containing object.



41

Review (1)

• Class bodies contain fields, 
constructors and methods.

• Fields store values that determine an 
object’s state.

• Constructors initialize objects –
particularly their fields.

• Methods implement the behavior of 
objects.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



42

Review (2)

• Fields, parameters and local variables 
are all variables.

• Fields persist for the lifetime of an 
object.

• Parameters are used to receive values 
into a constructor or method.

• Local variables are used for short-lived 
temporary storage. 

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



43

Review (3)

• Methods have a return type.
• void methods do not return anything.
• non-void methods return a value.
• non-void methods have a return 

statement.



44

Review (4)

• ‘Correct’ behavior often requires 
objects to make decisions.

• Objects can make decisions via 
conditional (if) statements.

• A true-or-false test allows one of two 
alternative courses of actions to be 
taken.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling


