Understanding class
definitions

Looking inside classes




Main concepts to be covered

« fields

« constructors
 methods

e parameters

« assignment statements
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Ticket machines - an external
view

« Exploring the behavior of a typical
ticket machine.
- Use the naive-ticket-machine project.

- Machines supply tickets of a fixed price.
e How is that price determined?
- How is ‘money’ entered into a machine?

- How does a machine keep track of the
money that is entered?
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Ticket machines

Demo
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Ticket machines - an internal
view
 Interacting with an object gives us

clues about its behavior.

« Looking inside allows us to determine
how that behavior is provided or
implemented.

 All Java classes have a similar-looking
internal view.
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Basic class structure

public class TicketMachine The C?Uter wrapper
{ of TicketMachine

Inner part omitted.

}

public class ClassName

{ 4 . N
Fields The inner
Constructors -« contents of a
Methods class

} - /
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Keywords

« Words with a special meaning in the
language:
—public
—class
—private
—1int

 Also known as reserved words.




Fields

 Fields store values public class TicketMachine
for an object. {

« They are also known
as instance variables.

 Fields define the

private int price;
private int balance;
private int total;

state of an object. Further details omitted.
. Use Inspect to view !

the state.
« Some values change )

often. visibility modifier P variable name
. Some change rarely K l e

(or not at all). private int price;
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Constructors

public TicketMachine (int cost)
{

price = cost;
balance = 0;
total = 0;

}
« [nitialize an object.

« Have the same name as their class.
Close association with the fields.

Store initial values into the fields.
« External parameter values for this.
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Passing data via parameters

= T A Blue); Create Object

// Create a machine that issues tickels of the given price.
// Note that the price must be greater than zero, and there

ke " [ tokettvachine 1
TicketMachine
Name of Instance: ticketMal -
new TicketMachine ( ' 500 3 ) price 500
[ Cancel ) O balance 0 \\
—T total 0 (B)
(A) TicketMachine /
\______ (constructor) /
Parameters are another o =i q
. icketCost | 500
sort of variable. L y
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Assignment

 Values are stored into fields (and
other variables) via assighment
statements:

- variable = expression;
—price = cost;

« A variable stores a single value, so
any previous value is lost.
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Choosing variable names

 There is a lot of freedom over choice
of names. Use it wisely!

« Choose expressive names to make
code easier to understand:

— price, amount, name, age, elc.

« Avoid single-letter or cryptic names:
-w, t5, xyz123
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Main concepts to be covered

 methods

- including accessor and mutator
methods

e conditional statements
» string concatenation
 local variables
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Methods

« Methods implement the behavior of objects.

« Methods have a consistent structure
comprised of a header and a body.

« Accessor methods provide information about
an object.

« Mutator methods alter the state of an object.

« Other sorts of methods accomplish a variety
of tasks.
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Method structure

The header provides the method’ s
signature:

— public int getPrice()

The header tells us:
- the name of the method
- what parameters it takes
- whether it returns a result
- its visibility to objects of other classes

The body encloses the method’ s
statements.
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Accessor (get) methods

return type

visibility modifier method name
\ / parameter list
ublic int getPrice() (empty)
return price; - return statement

\ start and end of method body (block)
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Accessor methods

« An accessor method always has a
return type that is not void.

e An accessor method returns a value
(result) of the type given in the
header.

e The method will contain a return
statement to return the value.

* NB: Returning is not printing!
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Test

public class CokeMachine

{

private price;

public CokeMachine ()

{
price = 300

public int getPrice

{

return Price;

}

« What is
wrong
here?

(there are five
errors!)
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Test

public class CokeMachine

(
Privace; - What is

public CokeMachine () wrong

{ here?
}

(there are five

public int getPri errors!)
{

re tue ;
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Mutator methods

« Have a similar method structure:
header and body.

- Used to mutate (i.e., change) an
object’ s state.

« Achieved through changing the value
of one or more fields.

- Typically contain assignment
statements.

- Often receive parameters.
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Mutator methods

visibility modifier return type

\ / A/method Name  parameter

public void insertMoney(int amount)

{
balance = balance + amount;

PN T

field being mutated assignment statement

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 21




set mutator methods

* Fields often have dedicated set
mutator methods.

« These have a simple, distinctive
form:
—void return type
- method name related to the field name

- single parameter, with the same type as
the type of the field

- a single assignment statement
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A typical set method

public void setDiscount(int amount)

{

discount = amount;

}

We can infer that discount
is a field of type int, i.e:

private int discount;
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Protective mutators

* A set method does not have to assign
the parameter to the field.

« The parameter may be checked for
validity and rejected if
inappropriate.

« Mutators thereby protect fields.
« Mutators support encapsulation.
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Printing from methods

public void printTicket()

{
// Simulate the printing of a ticket.
System.out.println ("#######H#HH#HHHA#HRH") ;
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");

System.out.println ("########H#H#FRHHHFFRE") ;
System.out.println() ;

// Update the total collected with the balance.
total = total + balance;

// Clear the balance.

balance = 0;
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String concatenation

*4+5 |

9 =3 overloading
* "wind” + "ow"

‘window"

e "Result: "+ 6
"Result: 6"

« "#" + price + " cents”
# 500 cents’
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Quiz

» System.out.printin(5 + 6 + "hello");
llhello

» System.out.println("hello” + 5 + 6);
hello56
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Method summary

« Methods implement all object behavior.

A method has a name and a return type.
- The return-type may be void.
- A non-void return type means the method will
return a value to its caller.
* A method might take parameters.

- Parameters bring values in from outside for the
method to use.
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Reflecting on the ticket
machines

« Their behavior is inadequate in
several ways:

- No checks on the amounts entered.
- No refunds.
- No checks for a sensible initialization.

« How can we do better?
- We need more sophisticated behavior.
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Making choices in everyday life

 If | have enough money left, then |
will go out for a meal

- otherwise | will stay home and watch
a movie.
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Making a choice in everyday life

if (I have enough money left) {
go out for a meal,

}

else {
stay home and watch a movie;,

}
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Making choices in Java

boolean condition to be tested

‘if’ keyword
/ actions if condition is true
if (perform some test) ({ ////

Do these statements if the test gave a true result

}

else {

Do these statements if the test gave a false result

} '\
‘ ) actions if condition is false
else’ keyword
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Making a choice in the
ticket machine

public void insertMoney (int amount)

{
if (amount > 0) {

balance = balance + amount;

}
else {
System.out.println (
"Use a positive amount: " +
amount) ;
}
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How do we write
refundBalance™?
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Variables - a recap

* Fields are one sort of variable.
- They store values through the life of an object.
- They are accessible throughout the class.

 Parameters are another sort of variable:

- They receive values from outside the method.
- They help a method complete its task.

- Each call to the method receives a fresh set of
values.

- Parameter values are short lived.
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Local variables

* Methods can define their own, local
variables:
- Short lived, like parameters.

- The method sets their values - unlike
parameters, they do not receive external
values.

- Used for ‘temporary’ calculation and storage.

- They exist only as long as the method is being
executed.

- They are only accessible from within the
method.
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Scope highlighting

ann TicketMachine

ECommreE Undo \C_ut' EComr| |Paste| |Findk..! EC[oseE | Source Code |:] ‘

&8 I3 =

6t 1

B2

B3 SR

64 * Print a ticket if enough money has been inserted, and

&5 * reduce the current balance by the ticket price. Print

| BB * an error message if more money is required.

&7 *

68 public void printTicket()

2] {

70 if(balance >= price) {

?‘_ ‘.;\":l.___. -Ii i"||-l|'=:ii; i _l__-__

72 System.out. printLn( "##EHEREHRRRTEEE )

73 System.out.printinC"# The Bluel Line");

74 System.out.println("# Ticket");

75 System.out.println("# " + price + " cents.");

76 System.out. println( @R ) ‘

77 System.out.println();

7 Update the totol collected with the price T

) total = total + price; |

BI // Reduce the balance by the prince I

B2 balance = balance - price; |

83 + |

&4 else { |

BS System.out.printin("You must insert at least: " + |

86 (price - balance) + " more cents.");

&7

S + 3

53 i3

]

a1 /E*

%2 * Return the money in the balance. !}!

a3 * The balance is cleared B4

saved |

_,f.b




Scope and lifetime

« Each block defines a new scope.
- Class, method and statement.

e Scopes may be nested:

- statement block inside another block
inside a method body inside a class

body.
« Scope is static (textual).
 Lifetime is dynamic (runtime).
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Local variables

A local variable

public int refundBalance ()

{
Novﬁwﬂﬁy » int amountToRefund;
modifier amountToRefund = balance;
balance = 0;
return amountToRefund;
}
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Scope and lifetime

The scope of a local variable is the
block in which it is declared.

The lifetime of a local variable is the
time of execution of the block in
which it is declared.

The scope of a field is its whole class.

The lifetime of a field is the lifetime
of its containing object.

40



Review (1)

« Class bodies contain fields,
constructors and methods.

e Fields store values that determine an
object’ s state.

« Constructors initialize objects -
particularly their fields.

* Methods implement the behavior of
objects.
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Review (2)

Fields, parameters and local variables
are all variables.

Fields persist for the lifetime of an
object.

Parameters are used to receive values
into a constructor or method.

Local variables are used for short-lived
temporary storage.
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Review (3)

Methods have a return type.
void methods do not return anything.
non-void methods return a value.

non-void methods have a return
statement.
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Review (4)

« ‘Correct’ behavior often requires
objects to make decisions.

« Objects can make decisions via
conditional (if) statements.

e A true-or-false test allows one of two
alternative courses of actions to be
taken.
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