Understanding class
definitions

Looking inside classes

Main concepts to be covered

« fields

« constructors
 methods

e parameters

« assignment statements

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 2

Ticket machines - an external
view

« Exploring the behavior of a typical
ticket machine.
- Use the naive-ticket-machine project.

- Machines supply tickets of a fixed price.
e How is that price determined?
- How is ‘money’ entered into a machine?

- How does a machine keep track of the
money that is entered?

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 3

Ticket machines

Demo

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling

4

Ticket machines - an internal
view
 Interacting with an object gives us

clues about its behavior.

« Looking inside allows us to determine
how that behavior is provided or
implemented.

 All Java classes have a similar-looking
internal view.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 5

Basic class structure

public class TicketMachine The C?Uter wrapper
{ of TicketMachine

Inner part omitted.

}

public class ClassName

{ 4 . N
Fields The inner
Constructors -« contents of a
Methods class

} - /

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 6

Keywords

« Words with a special meaning in the
language:
—public
—class
—private
—1int

 Also known as reserved words.

Fields

 Fields store values public class TicketMachine
for an object. {

« They are also known
as instance variables.

 Fields define the

private int price;
private int balance;
private int total;

state of an object. Further details omitted.
. Use Inspect to view !

the state.
« Some values change)

often. visibility modifier P variable name
. Some change rarely K l e

(or not at all). private int price;

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 8

Constructors

public TicketMachine (int cost)
{

price = cost;
balance = 0;
total = 0;

}
« [nitialize an object.

« Have the same name as their class.
Close association with the fields.

Store initial values into the fields.
« External parameter values for this.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling

Passing data via parameters

= T A Blue); Create Object

// Create a machine that issues tickels of the given price.
// Note that the price must be greater than zero, and there

ke " [tokettvachine 1
TicketMachine
Name of Instance: ticketMal -
new TicketMachine (' 500 3) price 500
[Cancel) O balance 0 \\
—T total 0 (B)
(A) TicketMachine /
______ (constructor) /
Parameters are another o =i q
. icketCost | 500
sort of variable. L y

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 10

Assignment

 Values are stored into fields (and
other variables) via assighment
statements:

- variable = expression;
—price = cost;

« A variable stores a single value, so
any previous value is lost.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling

11

Choosing variable names

 There is a lot of freedom over choice
of names. Use it wisely!

« Choose expressive names to make
code easier to understand:

— price, amount, name, age, elc.

« Avoid single-letter or cryptic names:
-w, t5, xyz123

12

Main concepts to be covered

 methods

- including accessor and mutator
methods

e conditional statements
» string concatenation
 local variables

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 13

Methods

« Methods implement the behavior of objects.

« Methods have a consistent structure
comprised of a header and a body.

« Accessor methods provide information about
an object.

« Mutator methods alter the state of an object.

« Other sorts of methods accomplish a variety
of tasks.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 14

Method structure

The header provides the method’ s
signature:

— public int getPrice()

The header tells us:
- the name of the method
- what parameters it takes
- whether it returns a result
- its visibility to objects of other classes

The body encloses the method’ s
statements.

15

Accessor (get) methods

return type

visibility modifier method name
\ / parameter list
ublic int getPrice() (empty)
return price; - return statement

\ start and end of method body (block)

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 16

Accessor methods

« An accessor method always has a
return type that is not void.

e An accessor method returns a value
(result) of the type given in the
header.

e The method will contain a return
statement to return the value.

* NB: Returning is not printing!

17

Test

public class CokeMachine

{

private price;

public CokeMachine ()

{
price = 300

public int getPrice

{

return Price;

}

« What is
wrong
here?

(there are five
errors!)

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 18

Test

public class CokeMachine

(
Privace; - What is

public CokeMachine () wrong

{ here?
}

(there are five

public int getPri errors!)
{

re tue ;
: “ First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kdlling 19

Mutator methods

« Have a similar method structure:
header and body.

- Used to mutate (i.e., change) an
object’ s state.

« Achieved through changing the value
of one or more fields.

- Typically contain assignment
statements.

- Often receive parameters.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 20

Mutator methods

visibility modifier return type

\ / A/method Name parameter

public void insertMoney(int amount)

{
balance = balance + amount;

PN T

field being mutated assignment statement

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 21

set mutator methods

* Fields often have dedicated set
mutator methods.

« These have a simple, distinctive
form:
—void return type
- method name related to the field name

- single parameter, with the same type as
the type of the field

- a single assignment statement

22

A typical set method

public void setDiscount(int amount)

{

discount = amount;

}

We can infer that discount
is a field of type int, i.e:

private int discount;

23

Protective mutators

* A set method does not have to assign
the parameter to the field.

« The parameter may be checked for
validity and rejected if
inappropriate.

« Mutators thereby protect fields.
« Mutators support encapsulation.

24

Printing from methods

public void printTicket()

{
// Simulate the printing of a ticket.
System.out.println ("#######H#HH#HHHA#HRH") ;
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");

System.out.println ("########H#H#FRHHHFFRE") ;
System.out.println() ;

// Update the total collected with the balance.
total = total + balance;

// Clear the balance.

balance = 0;

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 25

String concatenation

*4+5 |

9 =3 overloading
* "wind” + "ow"

‘window"

e "Result: "+ 6
"Result: 6"

« "#" + price + " cents”
500 cents’

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 26

Quiz

» System.out.printin(5 + 6 + "hello");
llhello

» System.out.println("hello” + 5 + 6);
hello56

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 27

Method summary

« Methods implement all object behavior.

A method has a name and a return type.
- The return-type may be void.
- A non-void return type means the method will
return a value to its caller.
* A method might take parameters.

- Parameters bring values in from outside for the
method to use.

28

Reflecting on the ticket
machines

« Their behavior is inadequate in
several ways:

- No checks on the amounts entered.
- No refunds.
- No checks for a sensible initialization.

« How can we do better?
- We need more sophisticated behavior.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 29

Making choices in everyday life

 If | have enough money left, then |
will go out for a meal

- otherwise | will stay home and watch
a movie.

30

Making a choice in everyday life

if (I have enough money left) {
go out for a meal,

}

else {
stay home and watch a movie;,

}

31

Making choices in Java

boolean condition to be tested

‘if’ keyword
/ actions if condition is true
if (perform some test) ({ ////

Do these statements if the test gave a true result

}

else {

Do these statements if the test gave a false result

} '\
‘) actions if condition is false
else’ keyword

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 32

Making a choice in the
ticket machine

public void insertMoney (int amount)

{
if (amount > 0) {

balance = balance + amount;

}
else {
System.out.println (
"Use a positive amount: " +
amount) ;
}

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 33

How do we write
refundBalance™?

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 34

Variables - a recap

* Fields are one sort of variable.
- They store values through the life of an object.
- They are accessible throughout the class.

 Parameters are another sort of variable:

- They receive values from outside the method.
- They help a method complete its task.

- Each call to the method receives a fresh set of
values.

- Parameter values are short lived.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 35

Local variables

* Methods can define their own, local
variables:
- Short lived, like parameters.

- The method sets their values - unlike
parameters, they do not receive external
values.

- Used for ‘temporary’ calculation and storage.

- They exist only as long as the method is being
executed.

- They are only accessible from within the
method.

36

Scope highlighting

ann TicketMachine

ECommreE Undo \C_ut' EComr| |Paste| |Findk..! EC[oseE | Source Code |:] ‘

&8 I3 =

6t 1

B2

B3 SR

64 * Print a ticket if enough money has been inserted, and

&5 * reduce the current balance by the ticket price. Print

| BB * an error message if more money is required.

&7 *

68 public void printTicket()

2] {

70 if(balance >= price) {

?‘_ ‘.;\":l.___. -Ii i"||-l|'=:ii; i _l__-__

72 System.out. printLn("##EHEREHRRRTEEE)

73 System.out.printinC"# The Bluel Line");

74 System.out.println("# Ticket");

75 System.out.println("# " + price + " cents.");

76 System.out. println(@R) ‘

77 System.out.println();

7 Update the totol collected with the price T

) total = total + price; |

BI // Reduce the balance by the prince I

B2 balance = balance - price; |

83 + |

&4 else { |

BS System.out.printin("You must insert at least: " + |

86 (price - balance) + " more cents.");

&7

S + 3

53 i3

]

a1 /E*

%2 * Return the money in the balance. !}!

a3 * The balance is cleared B4

saved |

_,f.b

Scope and lifetime

« Each block defines a new scope.
- Class, method and statement.

e Scopes may be nested:

- statement block inside another block
inside a method body inside a class

body.
« Scope is static (textual).
 Lifetime is dynamic (runtime).

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 38

Local variables

A local variable

public int refundBalance ()

{
Novﬁwﬂﬁy » int amountToRefund;
modifier amountToRefund = balance;
balance = 0;
return amountToRefund;
}

39

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling

Scope and lifetime

The scope of a local variable is the
block in which it is declared.

The lifetime of a local variable is the
time of execution of the block in
which it is declared.

The scope of a field is its whole class.

The lifetime of a field is the lifetime
of its containing object.

40

Review (1)

« Class bodies contain fields,
constructors and methods.

e Fields store values that determine an
object’ s state.

« Constructors initialize objects -
particularly their fields.

* Methods implement the behavior of
objects.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 41

Review (2)

Fields, parameters and local variables
are all variables.

Fields persist for the lifetime of an
object.

Parameters are used to receive values
into a constructor or method.

Local variables are used for short-lived
temporary storage.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 42

Review (3)

Methods have a return type.
void methods do not return anything.
non-void methods return a value.

non-void methods have a return
statement.

43

Review (4)

« ‘Correct’ behavior often requires
objects to make decisions.

« Objects can make decisions via
conditional (if) statements.

e A true-or-false test allows one of two
alternative courses of actions to be
taken.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 44

